Effects of Pressure, Temperature, and Concentration on the Viscosity of Aqueous Ammonium Bromide Solution

Yukihiro Yoshimura*, Seiji Sawamura, and Yoshihiro Taniguchi Department of Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-77, Japan.

Z. Naturforsch. 50 a, 316-322 (1995); received December 14, 1994

Dedicated to Prof. Hitoshi Ohtaki on the occasion of his 60th birthday

The viscosity of aqueous ammonium bromide solutions is measured at 0.1-1.0 mol kg $^{-1}$, 278.2 $^{-1}$ 323.2 K, and 0.1-375 MPa, using a high-pressure rolling-ball viscometer. The activation energy ($E_{\rm v}$) for viscous flow and Jones-Dole's B coefficient are estimated. $E_{\rm v}$ against pressure yields a concave curve with a minimum and B yields a convex one with a maximum. These phenomena are attributed to pressure, temperature, and concentration effects on the water-structure.

Key words: Viscosity, High pressure, Ammonium bromide, Activation energy, Jones-Dole's B coefficient

1. Introduction

It is well known that the viscosity curve at low temperature of water against pressure exhibits a minimum, e.g. at 100 MPa for an isothermal curve at 283 K [1]. The reduction of the viscosity with increasing pressure up to the minimum has been ascribed to breaking of the bulky water-structure by compression [2] and the increase of the viscosity after the minimum has been reached to stuffing. The minimum shifts to lower pressure with increasing temperature and disappears at ca. 310 K because of the breaking of the hydrogen-bonding [1].

Another type of reduction of the viscosity of water is known to be caused by addition of an electrolyte whose Jones-Dole's B coefficient is negative, suggesting breaking of water-structure at atmospheric pressure [3]. A typical electrolyte showing this effect is ammonium bromide (NH₄Br). We are interested in the viscosity phenomena of aqueous NH₄Br solutions at high pressure where the water structure is broken. In the present work we have measured the viscosity of aqueous NH₄Br solutions as a function of pressure, temperature, and concentration. The results are compared with those of NaCl [4], whose B coefficients is slightly positive.

Reprint requests to Prof. S. Sawamura.

To estimate the viscosity, the density of the solution is needed [4]. Therefore the high-pressure density of the solution was also measured.

2. Experimental Section

NH₄Br purchased from Nakarai Tesque, Inc. (extra pure grade) was recrystallized twice from water and dried in a vacuum desicator over P_2O_5 . The purity of the salts was checked to be better than 99.8% by titration with 0.1 mol dm $^{-3}$ AgNO $_3$. The concentrations of the sample solutions were 0.100, 0.300, 0.500, 0.700, and 1.000 (\pm 0.0002) mol kg $^{-1}$. They were passed through a membrane filter (d=25 mm, pore size 0.1 μ m), to remove dust, and then put into viscometers or pycnometers.

The viscosity at 0.1 MPa was measured using an Ubbelohde-type viscometer and that at high pressure was done using a rolling-ball type viscometer designed by us [6]. The viscosity, η , was estimated from the rolling time, t:

$$\eta = K \left(d_{\mathsf{b}} - d \right) t, \tag{1}$$

where K is a constant for the equipment and d_b and d are the density of the ball and solution, respectively. The density of the solution at 0.1 MPa was measured using an Ostwald's pycnometer (25 cm³). To estimate the high-pressure density, the compression k, defined by

$$k = (d - d_0)/d \tag{2}$$

0932-0784 / 95 / 0200-0316 \$ 06.00 © - Verlag der Zeitschrift für Naturforschung, D-72027 Tübingen

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^{*} Present address: Department of Chemistry, National Defense Academy, Hashirimizu, Yokosuka, Kanagawa, 239, Japan.

Table 1. Compression of aqueous NH₄Br solution.

p/MPa	T/K								
	278.2	283.2	288.2	298.2	313.2	323.2			
		0.10	00 mol kg	g - 1					
50	0.0220	0.0217	0.0221	0.0205	0.0195	0.0200			
100	0.0412	0.0401	0.0396	0.0388	0.0365	0.0372			
150	0.0577	0.0572	0.0553	0.0537	0.0510	0.0510			
200	0.0720	0.0707	0.0696	0.0679	0.0648	0.0656			
250	0.0854	0.0844	0.0833	0.0801	0.0770	0.077			
300	0.0975	0.0964	0.0962	0.0912	0.0913	0.088			
			00 mol kg	g ^{- 1}					
50	0.0237	0.0222	0.0209	0.0204	0.0185	0.017'			
100	0.0403	0.0396	0.0395	0.0387	0.0370	0.035'			
150	0.0573	0.0553	0.0544	0.0521	0.0507	0.049			
200	0.0712	0.0699	0.0691	0.0680	0.0671	0.065			
250	0.0839	0.0828	0.0817	0.0795	0.0761	0.075			
300	0.0983	0.0963	0.0952	0.0934	0.0899	0.0860			
		0.50	00 mol kg	g ^{- 1}					
50	0.0243	0.0222	0.0203	0.0201	0.0179	0.0166			
100	0.0399	0.0392	0.0392	0.0382	0.0370	0.0348			
150	0.0570	0.0543	0.0537	0.0510	0.0502	0.0479			
200	0.0706	0.0692	0.0685	0.0674	0.0674	0.0643			
250	0.0829	0.0816	0.0806	0.0786	0.0752	0.0748			
300	0.0981	0.0957	0.0942	0.0935	0.0875	0.0869			
		0.70	00 mol kg	y - 1					
50	0.0235	0.0218	0.0202	0.0197	0.0177	0.0168			
100	0.0397	0.0390	0.0386	0.0376	0.0362	0.034			
150	0.0566	0.0541	0.0533	0.0505	0.0495	0.047			
200	0.0702	0.0686	0.0679	0.0662	0.0657	0.063			
250	0.0823	0.0809	0.0799	0.0776	0.0742	0.0738			
300	0.0967	0.0944	0.0931	0.0914	0.0862	0.085			
		1.00	00 mol kg	g - 1					
50	0.0219	0.0210	0.0202	0.0190	0.0184	0.0182			
100	0.0404	0.0340	0.0376	0.0356	0.0345	0.0342			
150	0.0563	0.0546	0.0529	0.0503	0.0488	0.0483			
200	0.0704	0.0684	0.0666	0.0635	0.0618	0.0609			
250	0.0829	0.0808	0.0790	0.0754	0.0735	0.072			
300	0.0943	0.0920	0.0903	0.0864	0.0843	0.082			

where d_0 is the density of the solution at 0.1 MPa, was measured using an Adams-type piezometer [7]. The detail for these measurements were previously described [4-6, 8].

3. Results and Discussion

3.1. Density of Aqueous NH₄Br Solution

The obtained compression of the solution is listed in Table 1. It is well known that the modified Tait's equation

$$k = E \log_{10} [(F + p)/(F + 0.1)],$$
 (3)

Table 2. Density at 0.1 MPa and parameters of modified Tait's equation.

T K	$\frac{m}{\text{mol kg}^{-1}}$	$\frac{d_0}{\text{g cm}^{-3}}$	E	$\frac{F}{\text{MPa}}$
278.2	0.100	1.00548	0.3031	273.8
	0.300	1.01649	0.2971	268.8
	0.500	1.02737	0.2914	263.9
	0.700	1.03811	0.2856	258.9
	1.000	1.05399	0.2773	251.5
283.2	0.100	1.00514	0.3135	291.5
	0.300	1.01604	0.3065	286.7
	0.500	1.02682	0.2999	281.9
	0.700	1.03746	0.2929	277.2
	1.000	1.05323	0.2841	269.9
288.2	0.100	1.00455	0.3201	305.7
	0.300	1.01539	0.3128	301.4
	0.500	1.02608	0.3061	297.1
	0.700	1.03663	0.2993	292.8
	1.000	1.05221	0.2894	286.3
298.2	0.100	1.00246	0.3243	323.0
	0.300	1.01321	0.3203	322.4
	0.500	1.02379	0.3143	319.3
	0.700	1.03421	0.3078	316.2
	1.000	1.04956	0.2984	311.5
313.2	0.100	0.99768	0.3203	330.0
	0.300	1.00831	0.3156	328.6
	0.500	1.01876	0.3096	326.1
	0.700	1.02902	0.3042	323.7
	1.000	1.04400	0.2957	320.1
323.2	0.100	0.99357	0.3187	331.8
	0.300	1.00409	0.3112	327.9
	0.500	1.01449	0.3025	322.8
	0.700	1.02477	0.2941	317.7
	1.000	1.03980	0.2816	310.1

where E and F are constants and p is the pressure (MPa), is applicable to many compression data of liquids, such as organic solvents and water, as a function of pressure [9]. Our compression data in Table 1 are fitted to this equation, and E and F values are obtained as listed in Table 2. To estimate the high-pressure density, we did not use the compression data in Table 1 but those calculated from (3), using the E and F values in Table 2. The densities at 0.1 MPa are also listed in Table 2.

3.2. Pressure Dependence of the Viscosity

The viscosities are listed in Table 3 and plotted in Figure 1. The solid curves in Fig. 1 are fitting curves.

$$\eta = f_0 + f_1 p + f_2 p^2, \tag{4}$$

where f_0 , f_1 , and f_2 are coefficients and the numerical values are tabulated in Table 4. The deviation of the

225

250

275

300

325

350

375

1.454

1.466

1.500

1.522

1.546

1.584

Table 3.	Viscosity $(\eta/mPa~s)$ of aqueous NH_4Br solution					Table 3. Continued.							
p/MPa	T/K					p/MPa	T/K						
	278.2	283.2	288.2	298.2	313.2	323.2		278.2	283.2	288.2	298.2	313.2	323.2
		0.10	00 mol k	g-1					0.70	00 mol kg	g - 1		
0.1	1.4983	1.2904	1.1305	0.8858	0.6505	0.5444	0.1	1.4168	1.2336	1.0893	0.8678	0.6488	0.5474
25	1.465	1.267	1.117	0.878	0.654	0.550	25	1.396	1.210	1.082	0.857	0.653	0.559
50	1.445	1.251	1.112	0.877	0.662	0.555	50	1.394	1.201	1.074	0.851	0.657	0.570
75	1.429	1.242	1.109	0.880	0.670	0.563	75	1.396	1.197	1.071	0.848	0.662	0.580
100	1.418	1.237	1.108	0.883	0.679	0.570	100	1.399	1.198	1.070	0.849	0.675	0.590
125	1.412	1.238	1.110	0.887	0.688	0.580	125	1.400	1.204	1.074	0.852	0.679	0.600
150	1.409	1.243	1.114	0.892	0.697	0.589	150	1.416	1.215	1.082	0.859	0.695	0.610
175	1.411	1.251	1.121	0.899	0.706	0.599	175	1.436	1.232	1.094	0.868	0.708	0.620
200	1.418	1.263	1.129	0.906	0.716	0.606	200	1.451	1.253	1.109	0.881	0.712	0.631
225	1.429	1.278	1.141	0.915	0.727	0.617	225	1.460	1.280	1.128	0.897	0.728	0.641
250	1.444	1.296	1.155	0.921	0.738	0.628	250	1.490	_	1.151	0.916	0.734	0.655
275	1.464	1.316	1.171	0.936	0.749	0.640	275	1.515	_	1.178	0.938	0.745	0.665
300	1.488	1.339	1.190	0.948	0.760	0.650	300	1.533	_	_	0.963	0.757	0.680
325	1.516	1.364	1.211	0.962	0.772	0.665	325	1.575	_	_	0.992	0.770	0.695
350	1.549	1.391	1.234	0.976	0.785	0.675	350	1.610	_	_	_	0.782	0.712
375	1.594	1.420	1.260	0.992	0.797	0.690	375	1.635	_	_	_	0.795	0.730
	$0.300~\mathrm{mol~kg^{-1}}$							00 mol k					
0.1	1.4694	1.2706	1.1159	0.8791	0.6495	0.5463	0.1	1.3861	1.2125	1.0716	0.8616	0.6505	0.5497
25	1.445	1.256	1.102	0.871	0.655	0.555	25	1.380	1.190	1.064	0.851	0.652	0.564
50	1.425	1.249	1.096	0.871	0.663	0.561	50	1.373	1.181	1.056	0.845	0.667	0.572
75	1.409	1.244	1.092	0.873	0.671	0.567	75	1.384	_	1.053	0.842	0.672	0.582
100	1.398	1.242	1.090	0.876	0.680	0.574	100	1.386	_	1.052	0.843	0.685	0.591
125	1.392	1.242	1.091	0.880	0.689	0.585	125	1.400	_	1.056	0.846	0.689	0.603
150	1.389	1.245	1.094	0.885	0.698	0.594	150	1.424	_	1.064	0.854	0.705	0.615
175	1.391	1.250	1.099	0.892	0.705	0.603	175	1.434		1.084	0.862	0.718	0.626
200	1.398	1.258	1.107	0.899	0.717	0.613	200	1.468	1.260	1.113	0.875	0.722	0.637
225	1.409	1.268	1.118	0.908	0.728	0.626	225	1.490	1.290	1.138	0.901	0.738	0.650
250	1.424	1.281	1.130	0.918	0.739	0.636	250	1.520	1.321	1.161	0.919	0.744	0.663
275	1.444	1.296	1.145	0.929	0.750	0.646	275	1.551	1.358	1.188	0.941	0.755	0.675
300	1.468	1.313	1.162	0.941	0.761	0.656	300	1.590	1.400	1.219	0.967	0.768	0.690
325	1.496	1.338	1.182	0.955	0.773	0.670	325	1.622	_	1.254	0.996	0.780	0.705
350 375	1.529 1.574	1.356 1.381	1.204 1.229	0.969 0.985	0.786 0.798	0.684 0.699	350 375	1.650 1.699	_	1.292 1.335	1.042 1.080	0.792 0.805	0.725 0.740
313	1.574		00 mol k		0.770	0.077		1.077		1.000			
0.1	1.4423	1.2517	1.1022	0.8731	0.6490	0.5466							
25	1.422	1.222	1.094	0.866	0.652	0.558	minim	um is ke	pt even	at 1 mol	\log^{-1} . \log	This mea	ins that
50	1.415	1.215	1.088	0.857	0.667	0.564	additio	n of NI	H₄Br up	to 1 m	ol $k\sigma^{-1}$	does no	ot com-
75	1.413	1.209	1.087	0.856	0.672	0.572							
100	1.411	1.207	1.086	0.857	0.685	0.582	pletely	break t	he wate	r structi	are at 0.	I MPa.	
125	1.411	1.208	1.101	0.868	0.689	0.592							
150	1.414	1.212	1.101	0.878	0.705	0.601							
175	1.421	1.220	1.103	0.881	0.718	0.613	3.3. Te	emperati	ure Depe	endence	of the V	iscosity	
200	1.429	1.231	1.120	0.890	0.722	0.624		•	•		-		
200	1.429	1.231	1.120	0.000	0.722	0.024	Tem	neratur	denen	lence of	the vis	cosity h	as heer

dots from the curves is at most $\pm 1\%$. The curves at zero concentration are cited from [1]. The viscosity curve of water at zero concentration at lower temperatures than 298.2 K shows a minimum in Figure 1. The curve is deformed by addition of NH₄Br, but the

1.134

1.142

1.161

1.174

1.192

1.212

1.233

1.246

1.263

1.285

1.309

1.337

1.369

1.403

0.900

0.926

0.940

0.956

0.973

0.991

1.011

0.738

0.744

0.755

0.767

0.780

0.792

0.805

0.635

0.647

0.660

0.672

0.685

0.701

0.720

Temperature dependence of the viscosity has been represented by the activation energy, E_{v} , for viscous flow [10] defined by

$$\left[\partial \ln \eta / \partial (1/T)\right]_p = E_v / R. \tag{5}$$

 $E_{\rm v}$ is an important parameters for the understanding the structure of ionic hydration [11]. $\ln \eta$ vs. 1/T for the solutions at 0.5 mol kg⁻¹ is plotted in Fig. 2 as an example. The curves are estimated from Table 4 using (4) and are fitted to the second polynomial of 1/T. E_{v} is estimated from the slope of (5). The pressure dependence of the $E_{\rm v}$ at 298.2 K is shown in Figure 3. The

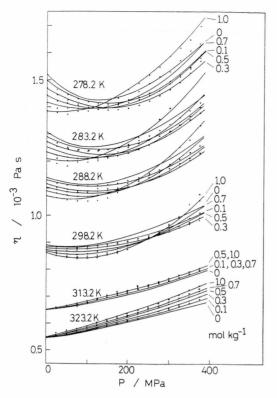


Fig. 1. Pressure dependence of the viscosity for aqueous $\mathrm{NH_4Br}$ solution.

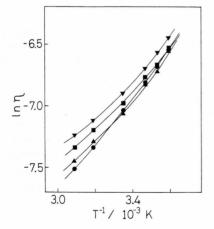


Fig. 2. $\ln \eta$ vs. 1/T for 0.500 mol kg $^{-1}$ NH₄Br solution. \bullet : 0.1 MPa, \blacktriangle : 100 MPa, \blacksquare : 250 MPa, \blacktriangledown : 375 MPa.

Table 4. Coefficients of f_0 , f_1 , and f_2 in (4) for aqueous $\mathrm{NH_4Br}$ solution.

$\frac{T}{K}$	$\frac{m}{\text{mol kg}^{-1}}$	$\frac{f_0}{10^{-3} \text{ Pa s}}$	$\frac{f_1}{10^{-12} \mathrm{s}}$	$\frac{f_2}{10^{-21} \text{Pa}^{-1} \text{s}}$
278.2	0.100 0.300 0.500 0.700 1.000	1.496 1.468 1.442 1.418 1.383	-1.063 -0.936 -0.755 -0.530 -0.096	3.555 3.166 3.064 2.900 2.650
283.2	0.100 0.300 0.500 0.700 1.000	1.289 1.271 1.251 1.232 1.208	-0.695 -0.708 -0.636 -0.504 -0.244	2.964 2.701 2.751 2.802 2.802
288.2	0.100 0.300 0.500 0.700 1.000	1.131 1.116 1.102 1.088 1.070	-0.434 -0.455 -0.418 -0.430 -0.325	2.021 2.015 2.120 2.522 2.766
298.2	0.100 0.300 0.500 0.700 1.000	0.885 0.878 0.872 0.867 0.860	-0.091 -0.119 -0.184 -0.273 -0.402	1.104 1.102 1.425 1.860 2.477
313.2	0.100 0.300 0.500 0.700 1.000	0.651 0.650 0.649 0.649 0.651	0.221 0.240 0.272 0.297 0.296	0.391 0.366 0.311 0.259 0.297
323.2	0.100 0.300 0.500 0.700 1.000	0.544 0.546 0.547 0.547 0.550	0.267 0.274 0.306 0.341 0.387	0.281 0.350 0.349 0.335 0.308

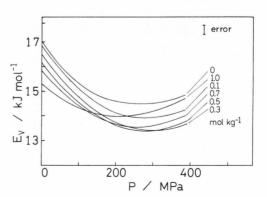


Fig. 3. Pressure dependence of the activation energy for the viscosity of aqueous $\rm NH_4Br$ solution and water at 298.2 K.

 $E_{\rm v}$'s at all concentrations diminish with increasing pressure up to 200-300 MPa and then increase, as similar minimum has been observed for 0-2 mol kg $^{-1}$ NaCl solution in the same pressure region [4]. The minimum of $E_{\rm v}$ for water has been ascribed to competition between the decrease of $E_{\rm v}$ accompanying water-structure breaking by compression and increase of $E_{\rm v}$ by stuffing of water molecules. The $E_{\rm v}$ at 0.1 MPa decreases with addition of NH₄Br, as shown in Figure 3. This has been attributed to the water-structure breaking effect of NH₄Br. At high pressure, this effect is thought to become weak because the water structure is already broken by pressure. Therefore $E_{\rm v}$ at 375 MPa increases with increasing concentration after the reduction from zero to 0.3 mol kg $^{-1}$.

3.4. Concentration Dependence of the Viscosity

In Fig. 4 the viscosity is plotted against concentration. Our results at 0.1 MPa and 298.2 K coincide with the data by Getman [12]. This viscosity at 0.1 MPa decreases with increasing concentration at low temperature between 278.2 K and 298.2 K. A similar reduction of the viscosity has been observed for several aqueous electrolyte solutions, and at high concentration the viscosity increased, resulting in a minimum [3]. For NH₄Br solution the minimum is known to be at 2-3 mol dm⁻³ [12]. This reduction of the viscosity has been ascribed to breaking of water-structure by addition of electrolyte, and the electrolyte has been classified as a structure breaker [3]. Because the water structure at high temperature is already broken by heat, the viscosity at high temperature does not decrease by addition of the electrolyte, as shown in Figure 4.

With increasing pressure up to 375 MPa, the viscosity minimum shifts to low concentrations and appears at 278.2–298.2 K in Figure 4. This seems to suggest that the water-structure breaking effect of NH₄Br is weakened by pressure. On the other hand, the slope of the curve at zero concentration at 375 MPa is steeper than that at 0.1 MPa, suggesting that the water-structure breaking effect of NH₄Br is enhanced by pressure. To make the situation clear, it is reasonable to estimate the Jones-Dole's B coefficient [3]. Because the concentration range in Fig. 4 is wide, we use an extended Jones-Dole's equation [13]:

$$\eta/\eta_0 = 1 + A\sqrt{c} + Bc + Dc^2,$$
 (6)

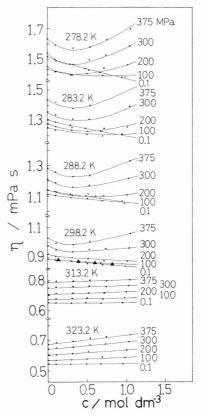


Fig. 4. Concentration dependence of the viscosity for aqueous NH₄Br solution. **\(\rightarrow\$: Getman [12] at 298.2 K and 0.1 MPa.**

where η_0 is the viscosities of water and c is the molarity (mol dm⁻³) of the electrolytes. This equation can be changed into a linear function of c:

$$(\eta/\eta_0 - 1 - A\sqrt{c})/c = B + Dc.$$
 (7)

The A value can be estimated to be $0.0050 \,\mathrm{mol^{-1/2}} \,\mathrm{dm^{3/2}}$ [14, 15]. Its pressure and temperature dependences may be negligible because A itself is small. Therefore we applied this value of A in (7) at all temperatures and pressures. Figure 5 shows linear relations of $(\eta/\eta_0-1-A\sqrt{c})$ vs. c. Our data at 0.1 MPa are in good agreement with those by Getman [12]. The B value at 0.1 MPa is obtained to be $-0.065 \,\mathrm{mol^{-1}} \,\mathrm{dm^3}$ by extrapolation of the line to zero concentration. It is compared with $-0.049 \,\mathrm{mol^{-1}} \,\mathrm{dm^3}$ calculated from the B values of $\mathrm{NH_4^+}$ and $\mathrm{Br^-}$ ions by Nightingale [3]. These facts support the validity of our estimation of B using (7). The pressure dependence of the B of $\mathrm{NH_4Br}$ in water is shown in Figure 6. The B's

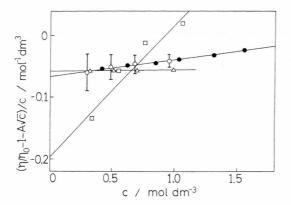


Fig. 5. $(\eta/\eta_0 - 1 - A\sqrt{c} \text{ vs. } c \text{ for aqueous NH}_4\text{Br solution at 298.2 K. o: 0.1 MPa, } \Delta$: 100 MPa, \Box : 300 MPa, \bullet : Getman [12] at 0.1 MPa.

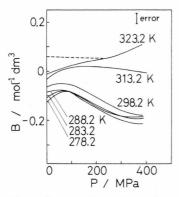


Fig. 6. Pressure dependence of Jones-Dole's B coefficient of NH_4Br in water. · · · · · : theoretical (see text).

are negative at 0.1 MPa, increase with increasing pressure up to ca. 100 MPa, and decrease after having a maximum except for the *B* at 323.2 K. A similar maximum has been observed for NaCl in water at ca. 100 MPa at 283.2, 298.2, and 323.2 K [4]. The dotted line was estimated by Ibuki and Nakahara's method based on a Hubbard and Onsager's dielectric friction theory [16] using high pressure properties of the viscosity [1], dielectric constant [17], and dielectric relaxation time of water [18]. This line is for elec-

trolytes whose ionic radius is 0.1-0.2 nm, including both NH₄Br and NaCl. It decreases with increasing pressure without any maximum because the theory does not take any water structure into account. The reduction of B for NaCl with increasing pressure at higher pressure than 100 MPa was ascribed to this effect [4]. On the other hand, the increasing of B for NaCl up to 100 MPa has been ascribed to an apparent enhancement of B accompanying the structurebreaking in bulk water by pressure [4]. The maximum of B for NH₄Br in Fig. 6 may be ascribed to competition of these two effects, though the increase of B at 323.2 K higher pressure than 100 MPa can not be ascribed to these effects, suggesting an other interaction between NH₄Br and water because this increase has not been observed for NaCl in water at the same temperature. The matter needs further consideration.

4. Conclusion

In the present work, two high-pressure phenomena were observed; (1) the activation energy of viscous flow for aqueous NH₄Br solution decreases with increasing concentration at 0.1 MPa and increases at high pressure, (2) the Jones-Dole's B coefficient of NH₄Br in water has a maximum at ca. 100 MPa. Similar phenomena have been observed for NaCl in water [4]. Supposing two types of water, that is, bulk water and hydrated water around an ion, the phenomena are ascribed to breaking of the former structure with increasing pressure, implying that the latter structure does not change (or change less) by pressure. As the hydrated water is strongly attracted by ions, it is reasonable that the structure of hydrated water does not change or change less by pressure than that of bulk water.

Acknowledgements

Supported by Ritsumeikan Academic Research Grant for Specific Research A.

- [1] International Association for the Properties of Steam. The IAPS formulation 1985 for the Viscosity of Ordinary Water Substance (1984).
- [2] E. M. Stanley and R. C. Batten, J. Phys. Chem. 73, 1187 (1969); R. A Horne and D. S. Johonson, J. Phys. Chem. 70, 2182 (1966).
- [3] E. R. Nightingale, Chemical Physics of Ionic Solution, John Wiley & Sons, New York 1966, p. 87.
- [4] S. Sawamura, Y. Yoshimura and Y. Taniguchi, J. Phys. Chem. **96**, 5526 (1992).
- [5] Y. Yoshimura, S. Sawamura, and Y. Taniguchi, J. Soc. Mat. Sci. Japan 42, 1109 (1993).

 [6] S. Sawamura, N. Takeuchi, K. Kitamura, and Y.
- Taniguchi, Rev. Sci. Instrum. **61**, 871 (1990).
- 7] L. H. Adams, J. Amer. Chem. Soc. 53, 3769 (1931).
- [8] Y. Yoshimura, S. Sawamura, J. Matsuda, K. Kitamura, and Y. Taniguchi, J. Soc. Mat. Sci. Japan 41, 318 (1992).
- [9] J. H. Dymond and R. Malhotra, Int. J. Thermophys. 9, 941 (1988).

- [10] S. Glasstone, K. J. Laidler, and H. Evring, The Theory of Rate Processes, McGraw-Hill: New York 1941, Chapter 9
- [11] D. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford Univ. Press, Oxford 1969.
- [12] F. H. Getman, J. Amer. Chem. Soc. 30, 721 (1908).
- [13] D. J. P. Out and J. M. Los, J. Solution Chem. 9, 19 (1980).
- [14] H. Falkenhagen and E. L. Vernon, Philos. Mag. 14, 537
- [15] M. Kaminsky, Discuss. Faraday Soc. 24, 171 (1957).
- [16] K. Ibuki and M. Nakahara, J. Chem. Phys. 85, 7312 (1985).
- [17] B. B. Owen, R. C. Milner, C. E. Milner, and H. L. Cogan, J. Phys. Chem. 65, 2065 (1961).
- [18] R. Pottel, E. Asselborn, and R. Eck, V. Tresp, Ber. Bunsenges. Phys. Chem. 3, 676 (1989).